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Abstract

Background: The human brain is complex and interconnected structurally. Brain connectome change is associated
with Alzheimer’s disease (AD) and other neurodegenerative diseases. Genetics and genomics studies have identified
molecular changes in AD; however, the results are often limited to isolated brain regions and are difficult to interpret its
findings in respect to brain connectome. The mechanisms of how one brain region impacts the molecular pathways in
other regions have not been systematically studied. And how the brain regions susceptible to AD pathology interact with
each other at the transcriptome level and how these interactions relate to brain connectome change are unclear.

Methods: Here, we compared structural brain connectomes defined by probabilistic tracts using diffusion magnetic
resonance imaging data in Alzheimer’s Disease Neuroimaging Initiative database and a brain transcriptome dataset
covering 17 brain regions.

Results: We observed that the changes in diffusion measures associated with AD diagnosis status and the associations
were replicated in an independent cohort. The result suggests that disease associated white matter changes are focal.
Analysis of the brain connectome by genomic data, tissue-tissue transcriptional synchronization between 17 brain
regions, indicates that the regions connected by AD-associated tracts were likely connected at the transcriptome level
with high number of tissue-to-tissue correlated (TTC) gene pairs (P = 0.03). And genes involved in TTC gene pairs between
white matter tract connected brain regions were enriched in signaling pathways (P = 6.08 × 10−9). Further pathway
interaction analysis identified ionotropic glutamate receptor pathway and Toll receptor signaling pathways to be
important for tissue-tissue synchronization at the transcriptome level. Transcript profile entailing Toll receptor signaling in
the blood was significantly associated with diffusion properties of white matter tracts, notable association between
fractional anisotropy and bilateral cingulum angular bundles (Ppermutation = 1.0 × 10−2 and 4.9 × 10−4 for left and right
respectively).
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Conclusions: In summary, our study suggests that brain connectomes defined by MRI and transcriptome data overlap
with each other.

Keywords: Alzheimer’s disease, Diffusion tensor imaging, Transcriptome, Post-mortem brain, Imaging transcriptomics,
Toll-like receptor signaling

Background
Neural connections comprising a nervous system are often
described in complicated anatomical networks. Much of
the human brain connectome has been assessed using
magnetic resonance imaging (MRI) where functional MRI
and diffusion MRI (dMRI) can measure correlated neural
activity and structural connectivity of the brain in vivo, re-
spectively [1, 2]. Various neurological diseases such as
Alzheimer’s disease (AD) are associated with disruption of
the brain connectome and studies show that the course of
AD continuum is associated with the changes in brain
network architecture [3–5]. Although our knowledge re-
garding the connectome changes in AD is abundant, un-
derstanding the molecular consequences or causes of
brain connectome changes is lacking.
Gene expression signatures carry important information

for understanding structural and functional brain connect-
ivity. It has been shown that the connectivity in rodent
brains can be predicted from mouse brain expression data
[6, 7]. Brain connectivity based on blood-oxygen-level-
dependent signals at a resting state is significantly associ-
ated with correlations between gene expression of human
brain segments [8]. However, the transcriptomic studies
of AD are often limited to isolated brain regions such as
the hippocampus or dorsolateral prefrontal cortex alone
and are difficult to interpret its findings in respect to the
brain connectome when its relation is not examined to-
gether [9, 10]. The mechanisms of how one brain region
impacts molecular pathways in other regions, especially
how the brain regions susceptible to AD pathology inter-
act with each other at the transcriptome level, have not
been systematically studied.
Here, we performed imaging-transcriptomic study ana-

lyses of brain connectomes based on dMRI imaging data
from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
and a brain transcriptome dataset covering 17 brain re-
gions [11–13]. Unlike traditional imaging genetic associ-
ation analyses, where the goal is to identify the
relationship between genetic variation and the changes in
neurological traits [14, 15], the analyses here focused in
spatial correlations between gene expression and struc-
tural brain connectivity. We hypothesize that different
brain regions are synchronized at the molecular level (gen-
omic connectome), partially facilitated by white matter
tracts (structural connectome). Dysfunction of genomic
connectome may associate with neurological diseases and

reflect genetic propensity underlying AD etiology. To test
our hypothesis, we (1) identified white matter tracts asso-
ciated with AD based on dMRI and replicated them in an
independent cohort [16], (2) identified brain regions con-
nected by white matter tracts, (3) compared structural
brain connections and genomic brain connections defined
as tissue-to-tissue correlations (TTCs) at the transcription
level, and (4) identified biological pathways involved in
TTCs in structurally connected brain regions [17, 18].

Methods
Neuroimaging analysis
Data used in the preparation of this study were obtained
from the ADNI database (http://adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive im-
pairment (MCI) and early Alzheimer’s disease (AD).
There were 232 ADNI2 subjects and 621 ADNI3 sub-
jects with both T1 and diffusion-weighted MRI images
at baseline when we downloaded the data on October
2018 from the Laboratory of Neuro-Imaging (http://
adni.loni.usc.edu) [11]. All images were converted from
DICOM to NIFTI using DCM2NII software (University
of South Carolina, SC, USA) [19]. All anatomical regions
of interests (ROIs) were segmented using FreeSurfer 6.0,
64-bit version (Massachusetts General Hospital, MA,
USA) [20]. The FreeSurfer pipeline included motion cor-
rection of volumetric T1-weighted imaged, stereotaxic
space transformation, intensity non-uniformity correc-
tion, removal of non-brain tissue, tessellation of gray/
white matter boundaries via surface modeling, automatic
topology correction, and surface deformation followed
by intensity gradient that optimally defined tissue bor-
ders where the greatest shift in intensity defined the
transition into the other tissue. Image outputs were visu-
ally checked for each subject. Segmentation of ROIs was
conducted based on “Desikan-Killiany” cortical atlas
[21]. Diffusion-weighted images were preprocessed using
FSL 5.0.10 (Wellcome Center, Oxford, UK) [22]. Diffu-
sion imaging pipeline included brain extraction,
susceptibility-induced distortion correction, eddy current
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and motion correction, individuals’ axial diffusivity
(AxD), radial diffusivity (RD), mean diffusivity (MD),
and fractional anisotropy (FA) estimation, and diffusion
uncertainty map calculation using BEDPOSTX [23–25].
Probabilistic tractography was performed using TRActs
Constrained by UnderLying Anatomy (TRACULA), and
18 tracts were derived (Massachusetts General Hospital,
MA, USA) [26]. The 18 tracts are forceps major, forceps
minor, left anterior thalamic radiations (L-ATR), left cin-
gulum—angular bundle (L-CAB), left cingulum—cingu-
late gyrus (L-CCG), left corticospinal tract (L-CST), left
inferior longitudinal fasciculus (L-ILF), left superior lon-
gitudinal fasciculus parietal (L-SLFP), left superior longi-
tudinal fasciculus temporal (L-SLFT), left uncinate
fasciculus (L-UNC), right anterior thalamic radiations
(R-ATR), right cingulum—angular bundle (R-CAB), right
cingulum—cingulate gyrus (R-CCG), right corticospinal
tract (R-CST), right inferior longitudinal fasciculus (R-
ILF), right superior longitudinal fasciculus parietal (R-
SLFP), right superior longitudinal fasciculus temporal (R-
SLFT), and right uncinate fasciculus (R-UNC). For each
tract, volume, average length, mean AxD, mean RD, mean
MD, and mean FA were calculated.
Imaging data for ADNI2 and ADNI3 cohorts were proc-

essed under identical procedure. After all quality checks
which include both systematic error checks and visual in-
spections, 593 out of 621 ADNI3 subjects and 220 out of
232 ADNI2 subjects successfully finished all imaging pro-
cesses. Among 593 ADNI3 subjects, 550 subjects had
qualifying clinical measures where age and gender were
available and diagnosis record was within 60 days of scan
date. Among 220 imaging processed subjects in ADNI2,
210 subjects had matching relevant phenotypes also
within 60 days of scan date. Fifty-one subjects overlapped
between ADNI3 and ADNI2 cohorts that had finished all
the image processing and phenotype matched with scan
date. Therefore, we omitted overlapping subjects from
ADNI3 and analyzed 499 subjects for ADNI3 as discovery
cohort and 210 ADNI2 subjects as the replication cohort.
Association between AD diagnosis and diffusion measures
of each tract (volume, average length, AxD, RD, MD, FA)
was examined via linear model adjusted for age, gender,
and total brain volume. Outliers that were 3.5 SD away
from the mean were removed from the model, and all sta-
tistics were false discovery rate (FDR) adjusted for mul-
tiple comparisons. Effect sizes (β) of associations with AD
(diffusion measure y = β*AD after adjusting covariates)
was also calculated from the models.

Reach probability calculation
The probability of tract reaching a Desikan-Killiany atlas
defined grey matter ROIs at its white matter border was
estimated. One voxel deep grey matter mask that is
neighboring white matter was derived for all 82 ROIs

and defined as ROI target masks. Path distribution for
each tract was trimmed to include white matter and ROI
target masks only. The probability of tract reaching ROI
at its white matter boundary was calculated by dividing
the number of paths passing through each voxel by the
total path number in trimmed tract. Finally, the normal-
ized probabilities within ROI target masks were averaged
for all ROIs and this was repeated for each tract
(Additional file 1: Figure S1A). These were defined as
“reach probability” of tract connecting to grey matter
ROIs (18 tracts towards 82 ROIs). The non-zero reach
probability followed an extreme value distribution
(Additional file 1: Figure S2A). We defined connections
based on the empirical cumulative distribution function
reflection point (reach probability = 0.002). At the cutoff,
203 of ROI-tract pairs were connected by a white matter
tract. This effectively isolated some ROIs to specific tracts
such as L-hippocampus was connected to L-CAB but not
with L-SLFT or L-SLFP (Additional file 2: Table S1).

Tissue-to-tissue correlated gene identification
Post-mortem brain tissues curated by Mount Sinai Hospital
were analyzed where gene expression for 17 brain regions
limited to the left hemisphere were available [12, 13]. The
transcriptome data was made up of maximum 63 subjects,
and any two brain regions were shared by 30–51 subjects
(Additional file 2: Table S2). The methods and cohort
characteristics for this dataset have been described in detail
[12, 13]. The 17 brain regions were frontal pole (FP), occipi-
tal visual cortex (OVC), inferior temporal gyrus (ITG), mid-
dle temporal gyrus (MTG), superior temporal gyrus (STG),
posterior cingulate cortex (PCC), anterior cingulate cortex
(ACC), parahippocampal gyrus (PHG), temporal pole (TP),
precentral gyrus (PCG), inferior frontal cortex (IFC), dorso-
lateral prefrontal cortex (DLPFC), superior parietal lobule
(SPL), prefrontal cortex (PFC), caudate nucleus (CN),
hippocampus (HIP), and putamen (PUT) (Additional file 2:
Table S2). The gene expression values were adjusted for
age, sex, post-mortem interval, pH, ethnicity, and Braak sta-
ging scores. The adjustment removed potential batch-
driven gene-gene correlations, such as both genes were up
in an ethnic group or disease diagnosis group, but en-
hanced gene-gene correlations that were consistent among
ethnic groups or disease diagnosis groups, and etc. Spear-
man correlation was used in identifying TTC gene pairs be-
tween 136 pairs of brain regions (17 × 16/2). Significant
TTC gene pairs were identified at genome-wide threshold
P-value < 1 × 10−8 as defined in previous TTC study [17].
Significant TTC gene pairs were counted for 136 brain re-
gion pairs (Additional file 2: Table S3).

Bipartite clustering
Significant TTC signals were discretized as binary values,
and Barber’s modularity was maximized which identifies
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two-mode networks of disjoint gene sets such that inter-
action only occurs with genes of another brain region
[27]. LPAb+ algorithm outperforms other methods for
bipartite networks [28, 29], and we utilized its two-stage
procedure where first “bottom-up” step propagates labels
iteratively to maximize node-by-node modularity and
second “top-down” step joins modules together to in-
crease network modularity [30]. Different random
initialization of node selection was performed five times
for all 136 ROI pairs and confirmed that the maximized
modularity converged to same optimal solution. For
each ROI pair, bipartite modules with more than 1000
interactions (TTC gene pairs) were selected and genes
within modules were pooled for each tissue before con-
ducting pathway enrichment analysis.

Pathway enrichment analysis
Curated pathways from Protein Analysis Through Evolu-
tionary Relationships (PANTHER) database v.14.1 were
analyzed [31]. Among 177 curated pathways available,
eight pathways made up of drosophila-specific pathways
were omitted (P06209, P06211, P06212, P06213, P06214,
P06215, P06216, P06217). The Fisher exact test was per-
formed to assess overrepresentation of our gene lists in
each pathway, and all human genes (n = 20,996) were
used as background. All pathway enrichment was cor-
rected for FDR.
In order to infer broad biological insight from path-

ways overrepresented in the genes involved in TTC gene
pairs, we created eight pathway categories that are bio-
synthesis, signaling, disease, physiology, development,
gene regulation, metabolism, and catabolism for which
detailed group identity for each pathway is listed in
Additional file 2: Table S4. As post hoc analysis, after
observing that a large number of associations were part
of signaling pathway subgroup, we further divided sig-
naling pathways into synaptic signaling, immune signal-
ing, synaptic immune signaling, endocrine signaling, and
unclassified (Additional file 2: Table S4). If the synthe-
sized end product or degraded starting material served
as a ligand in any synaptic, immune, or endocrine sig-
naling, they were assigned as such (adrenaline and
noradrenaline biosynthesis, aminobutyrate degradation,
androgen/estrogen/progesterone biosynthesis, cobalamin
biosynthesis, phenylethylamine degradation, vitamin B6

metabolism, gamma-aminobutyric acid synthesis, hista-
mine synthesis, vasopressin synthesis, vitamin D metab-
olism and pathway, bupropion degradation, nicotine
degradation). Oxidative stress response (P00046) was
categorized as immune signaling.

Pathway interaction analysis
For a ROI pair, molecular pathways significantly enriched
in genes involved in TTC gene pairs were binarized for

each ROIs (FDR < 0.05) (Fig. 4). Binarized pathway associ-
ations were matched between ROI1 and ROI2 that are
paired in bipartite clustering step and were transformed
into adjacency matrix (Additional file 1: Figure S3A). This
defines pathway interaction between ROI pairs. There
were three types of ROI pairs: (1) ROI pairs not connected
by tracts (not-bound), (2) ROI pairs bound by tracts
(tract-bound), and (3) ROI pairs bound by AD-associated
tracts (AD-tract-bound). Among 136 ROI pairs, there
were 72 not-bound, 64 tract-bound, and 43AD-tract-
bound. Proportion of pathway interactions in each group
was calculated by normalizing the summed adjacency
matrices by the number of ROI pairs (Additional file 1:
Figure S3B). The chi-square test was performed compar-
ing the proportion of pathway interactions for the
tract-bound and AD-tract-bound groups. Both com-
parisons were compared against the not-bound group
(Additional file 1: Table S5–6). The P-values were
−log10 transformed and were hierarchically clustered
using Ward’s method for further analysis.

Blood expression analysis
The ADNI study collected whole blood samples for 811
subjects at baseline, which were processed using Qiagen
PAXgene Blood RNA Kit (Germantown, MD, USA) [32].
Gene expression was profiled using Affymetrix Human
Genome U219 Array (Affymetrix, Santa Clara, CA, USA)
and was preprocessed using the Robust Multi-chip Aver-
age normalization method [33]. All quality check (QC)
procedures were performed by ADNI Genetics Core
which include RNA QC using Nanodrop and Agilent
Bioanalyzer, overall array assay QC using Affymetrix Ex-
pression Console software and Partek Genomic Suite
6.6, sex verification, and sample identity prediction using
Omni2.5M genotype [32]. Quality-controlled transcrip-
tome data was available for 744 subjects at 49,385 probe
level and was downloaded from http://adni.loni.usc.edu.
Blood transcriptome data was available for 102 ADNI2
subjects with successfully processed diffusion procedure
and year at which PaxGene sample was collected match-
ing with scan year. Toll receptor signaling pathway was
represented by 49 genes spanning 129 probes in the
transcriptome data [31], and probe-level expressions
were collapsed to gene-level using mean-max method
[34]. The association between diffusion measures for
each tract and gene expression was examined according
to the following linear model: Diffusion measure~α +
Gene Expression + Sex +Age + RIN + (1| AffyPlate) + ε
where α is intercept, ε is random error, and RIN is RNA
integrity number. The aggregate effect of 49 Toll recep-
tor signaling genes unto each diffusion measures was de-
termined using sum of χ2 method [35, 36], and its
significance was evaluated by 100,000 permutations
(Ppermutation < 0.05).
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Statistical analysis and visualizations
All statistical analyses were performed using Julia 1.0.3
(MIT, Cambridge, MA) [37]. The networks were visual-
ized using spring-affinity algorithm. All heatmaps were
drawn in R using Ward’s method for hierarchical clus-
tering (R Core Team, Vienna, Austria) [38].

Results
Brain connectome by dMRI and associations with AD
diagnosis
The ADNI3 cohort (n = 449, the “Methods” section)
[11], consisting of 347 healthy controls, 118 mild cogni-
tive impaired (MCI), and 34 AD patients, was interro-
gated for characterizing diffusion measures in 18 tracts
derived using TRACULA [26] (Table 1). The brain vol-
umes were positively correlated with MD and RD in all
tracts (Additional file 1: Figure S4). RD was more signifi-
cantly correlated with volume than MD. The average
length of tracts was negatively correlated with MD and
RD where MD was more correlated with tract average
lengths than RD. In all 18 tracts of interest, AxD was
positively correlated with FA and RD was positively cor-
related with MD.
The diffusion measures were compared against age,

sex, years of education, marriage status, APOE4 geno-
type, and total brain volume (TBV) and disease diagnosis
(Fig. 1a). Age was significantly associated with AxD, RD,
and MD in all tracts (P-values = 2.2 × 10−5 ~ 2.4 × 10−17)
and with FA in a subset of tracts (16 out of 18 tracts
below P-value < 0.05, Pmin = 4.2 × 10−12), consistent with
reports in literature [39]. TBV was associated with RD,
MD, and FA in a number of tracts. Disease diagnosis
status was associated with AxD, RD, and MD in a large
number of tracts similar to findings in other studies [40].
After adjusting age, sex, and TBV effects, only disease
diagnosis status remained significantly associated with
the diffusion measures (Fig. 1b). Among all diffusion
measures in 18 tracts, we identified 34 significant disease
associations in a data-driven manner with AxD, RD,
MD, and FA in a number of tracts at FDR < 0.05
(Table 2). There was no AD diagnosis status association
with bilateral CST and FMajor which are responsible for
motor and visual functions.
The ADNI2 cohort (n = 210, the “Methods” section)

[41], consisting of 75 healthy controls, 91 MCI, and 44
AD patients, is a cohort independent from the ADNI3
cohort (the “Methods” section). The same 18 tracts were

derived using TRACULA [26]. The similar inter-
relationships among diffusion measures, covariates, and
disease diagnosis were observed (Additional file 2: Table
S7). After adjusting age, sex, and TBV effects, 11 diffu-
sion measures were significantly associated with disease
diagnosis at FDR < 0.05 (Table 2, right) involving 4 of 18
tracts, bilateral CABs, bilateral SLFTs, L-SLFP, and L-
ILF. Note that not only all the 11 associations over-
lapped with the 34 associations identified in ADNI3 co-
hort, but the direction of measure changes in response
to diagnosis status was also replicated (Fig. 2). AxD, RD,
and MD increased while FA decreased with disease diag-
nosis status (Fig. 2). The effect sizes and directions in
ADNI2 and ADNI3 cohorts for the 34 associations iden-
tified in the ADNI3 cohort and the 11 replicated associa-
tions exhibited higher effect sizes than non-replicated
associations (Fig. 3, Additional file 2: Table S8), suggest-
ing a larger sample size is needed for replicating these
associations of small effect sizes.

Brain regions connected by different white matter tracts
We extracted path distribution information from each
tract and calculated the probability of a tract reaching
any Desikan-Killiany defined grey matter ROI [21].
Throughout this study, these measures were referred to
as “reach probability.” Reach probability was developed
to allow focusing on only major tracts and integrative
analysis between neuroimaging and transcriptome data-
sets. The reach probability was limited to white matter
boundary neighboring each respective ROI in order to
avoid amplifying the connection to ROI based on
within-ROI streamline propagations in the tractography
processes. Reach probability was derived for 18 tracts to-
wards 82 ROIs, and 607 out of 1476 (18 × 82) probabil-
ities had zero reach probability (41%) (Additional file 2:
Table S1). The non-zero reach probability followed an
extreme value distribution (Additional file 1: Figure S2),
and 203 ROI-tract pairs (33.4%) were identified (the
“Methods” section).

Brain connectome by tissue-tissue transcriptional
synchronization
In order to investigate molecular connections between
brain regions, we analyzed tissue-tissue co-regulation
[17, 18] of transcriptomic data covering 17 post-mortem
brain regions (Fig. 4) [12, 13]. Subjects shared for each
pair of brain regions were in the range of 30–51 subjects

Table 1 Demographic of ADNI2 and ADNI3

Age (years) Gender Ethnicity Diagnosis

Mean ± std Males Am. Indian/Alaskan Asian Black White More than one Unknown CN MCI Dementia

ADNI3 (n = 499) 73.8 ± 8.4 229 (45.9%) 1 (0.2%) 6 (1.2%) 15 (3.0%) 467 (93.6%) 8 (1.6%) 2 (0.4%) 347 118 34

ADNI2 (n = 210) 73.5 ± 6.8 120 (57.1%) 1 (0.5%) 6 (2.9%) 8 (3.8%) 192 (91.4%) 3 (1.4%) 0 (0.0%) 75 91 44
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depending on post-mortem tissue availability. There
were 136 (17 × 16/2) possible brain region pairs among
17 brain regions. Brain connectome is defined by TTC
of all gene pairs after adjusting Braak score in order to

examine consistent gene synchronization between brain
regions with regard to different disease diagnosis groups.
TTCs were adjusted for covariates such as age, sex,
post-mortem interval, pH, and race [17] (detailed in the
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marriage status, clinical diagnosis, APOE4 genotype, and total brain volume were tested against tract measures that are volume, volume
normalized by total brain volume, tract length, axial diffusivity (AxD), radial diffusivity (RD), mean diffusivity (MD), and fractional anisotropy (FA).
Rows of the heatmaps represent covariates. Individual association was −log10 transformed and displayed as heatmaps. Columns are organized by
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remain strongly associated with diffusion-related measures AxD, RD, MD, and FA
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“Methods” section). The strength of brain region-region
connections was measured by the number of significant
TTC gene pairs. The distribution of significant TTC
gene pair counts is shown in Fig. 5a for 136 region pairs,
suggesting that only a fraction of brain regions were syn-
chronized at the transcriptional level.

Comparison of brain connectomes by diffusion MRI and
genomics
The post-mortem brain regions were originally labeled ac-
cording to the Brodmann area map [12] and were
matched to brain regions in Desikan-Killiany cortical atlas
[21] that was used in the above tractography analysis
(Additional file 2: Table S2). Among 136 possible brain re-
gion pairs, 64 region pairs were connected by white matter
tracts defined by tractography. Among 64 tract-bound re-
gion pairs, 28 pairs were connected by AD-associated
tracts: L-CAB, L-ILF, L-SLFT, and L-SLFP. Among the
top 10 percentile of region pairs (n = 14) containing the
highest number of significant tissue-tissue correlated gene
pairs, 10 were tract-bound (Fisher’s exact test, P = 0.057;
Fig. 5b), and 7 out of top 10 percentile of region pairs
(n = 14) were bound by AD-associated tracts (Fisher’s
exact test, P = 0.03; Fig. 5b). This suggests that the brain
connectomes defined by two different approaches overlap,
especially for connections related to AD.

Pathways associated with TTC gene pairs between
different brain regions
Different brain regions were connected by white matter
tracts and synchronized at the transcriptional level as
shown above. To investigate whether any biological path-
ways were transcriptionally synchronized between brain re-
gion pairs, we constructed bipartite clusters of TTC gene
pairs for all 136 ROI pairs and identified gene modules for
each brain region in ROI pairs (Fig. 4). Genes in the mod-
ules were annotated using PANTHER database [31], and
pathways enriched among these genes at FDR < 0.05 are
listed in Additional file 2: Table S9. Among 169 pathways ×
136 ROI pairs (22,984), 736 (3.2%) pathways to ROI pair as-
sociations were significant, covering 83 pathways and 69
ROI pairs (Fig. 6a). A large fraction (51/83 = 61.4%) of
enriched pathways belonged to signaling pathways (Fisher
exact test, P = 6.08 × 10−9, Fig. 6a). The 69 ROI pairs were
clustered to 3 clusters according to enriched pathways
(Fig. 6a). The ROI pairs in cluster I (Fig. 6a), which were
connected by multiple pathways, were enriched for tract-
bound ROI pairs and AD-associated tract-bound pairs (P =
0.04 and 0.01, respectively). This suggests that white matter
tracts may serve as a mechanism of gene synchronization
for signaling pathways, at least in brain regions present in
ROI cluster I (PHG-TP, PHG-STG, ITG-MTG, ITG-PHG,
IFC-ITG, PFC-STG, IFC-ITG).

Table 2 Association between diffusion parameters and disease (FDR estimated independently)

ADNI3 (n = 499) ADNI2 (n = 210)

Tract Volume Length AxD RD MD FA Volume Length AxD RD MD FA

FMajor 0.41 0.83 0.55 0.09 0.14 0.02 0.89 0.18 0.64 0.07 0.07 0.08

Fminor 0.41 0.85 0.06 4.1 × 10−3 0.01 0.41 0.44 0.59 0.37 0.26 0.22 0.16

L-ATR 0.73 0.86 0.04 0.16 0.08 0.90 0.30 0.81 0.63 0.54 0.52 0.65

L-CAB** 0.41 0.74 2.1 × 10−5 1.9 × 10−7 3.0 × 10−7 0.04 0.01 0.10 2.7 × 10−4† 9.3 × 10− 7† 9.2 × 10− 7† 0.05†

L-CCG 0.95 0.96 0.06 0.02 0.01 0.39 0.65 0.65 0.08 0.95 0.34 0.46

L-CST 0.86 0.83 0.21 0.21 0.17 0.40 0.62 0.08 0.06 0.90 0.51 0.32

L-ILF** 0.71 0.85 0.02 0.04 0.02 0.88 0.54 0.63 0.04† 0.19 0.05 0.65

L-SLFP** 0.41 0.88 0.03 0.09 0.02 0.88 0.59 0.90 0.02† 0.67 0.22 0.30

L-SLFT** 0.49 0.88 0.03 0.11 0.04 0.71 0.63 0.65 1.2 × 10−3† 0.90 0.18 0.08

L-UNC 0.85 0.85 0.03 1.1 × 10−3 2.0 × 10−3 0.55 0.08 0.63 0.18 0.11 0.08 0.76

R-ATR 0.90 0.87 0.02 0.10 0.05 0.75 0.05 0.65 0.72 0.46 0.51 0.63

R-CAB** 0.60 0.63 4.8 × 10−3 1.2 × 10−5 2.3 × 10−5 0.04 0.06 0.06 1.2 × 10−3† 4.2 × 10− 3† 6.6 × 10−4† 0.54

R-CCG 0.93 0.85 4.8 × 10−3 0.10 0.01 0.89 0.69 0.86 0.08 0.90 0.51 0.58

R-CST 0.90 0.95 0.08 0.26 0.11 0.49 0.58 0.24 0.32 0.90 0.69 0.54

R-ILF 0.34 0.83 0.04 0.07 0.04 0.95 0.95 0.95 0.09 0.86 0.46 0.95

R-SLFP 0.75 0.67 0.02 0.41 0.10 0.06 0.65 0.65 0.07 0.89 0.51 0.38

R-SLFT** 0.90 0.85 0.01 0.39 0.06 0.07 0.41 0.90 0.05† 0.65 0.65 0.06

R-UNC 0.75 0.85 0.04 1.6 × 10−3 4.8 × 10−3 0.20 0.13 0.79 0.54 0.86 0.65 0.76

The associations below FDR < 0.05 in each cohort study are presented in italics
**Tracts with associations identified in ADNI3 and replicated in ADNI2
†Associations identified in ADNI3 and replicated in ADNI2
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Next, we examined whether any pathways were prefer-
entially involved in TTCs of tract-bound or AD-
associated tract-bound ROI pairs (Fig. 6b, detailed in the
“Methods” section). Apoptosis signaling pathway (P =
0.006), EGF receptor signaling (P = 0.046), and metabo-
tropic glutamate receptor (mGluR) I pathways (P =

0.049) were overrepresented in tract-bound region pairs
(Additional file 2: Table S9). More pathways were prefer-
entially involved in TTCs of AD-associated tract-bound
ROI pairs, including apoptosis signaling (P = 0.008),
muscarinic acetylcholine receptor (mAChR) 2 and 4 sig-
naling pathway (P = 0.01), valine synthesis (P = 0.012),
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Fig. 2 Eleven associations between diagnosis and diffusion parameters are replicated, and their change in direction is the same. a For AxD,
L-CAB, L-ILF, L-SLFT, L-SLFP, R-CAB, and R-SLFT are significantly associated with diagnosis status where AxD increased with disease severity. This is
observed in ADNI3 (n = 499) and is replicated in ADNI2 (n = 210). b, c For MD and RD, bilateral CABs are associated with diagnosis status and
their change in direction was consistent in two independent cohorts. d FA in bilateral CABs are associated with diagnosis status in ADNI3 but
only L-CAB association is replicated in ADNI2. The change in direction is consistent between two cohorts. AxD axial diffusivity, RD radial diffusivity,
MD mean diffusivity, FA fractional anisotropy, L-CAB left cingulum—angular bundle, L-ILF left inferior longitudinal fasciculus, L-SLFP left superior
longitudinal fasciculus parietal, L-SLFT left superior longitudinal fasciculus temporal, R-CAB right cingulum—angular bundle, R-SLFT right superior
longitudinal fasciculus temporal
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PI3 kinase pathway (P = 0.013), endothelin signaling
pathway (P = 0.016), histamine synthesis (P = 0.016), p38
MAPK pathway (P = 0.02), mGluR I pathway (P = 0.024),
inflammation mediated by chemokine and cytokine sig-
naling pathway (P = 0.028), mGluR II pathway (P =
0.035), toll receptor signaling pathway (P = 0.045),
adenine and hypoxanthine salvage pathway (P = 0.046)
(Additional file 2: Table S9). The results suggest that sig-
naling pathways, especially synaptic signaling and im-
mune signaling pathways, involve in transcriptional
synchronization between brain regions connected by
white matter tracts.

Toll receptor signaling pathway is overrepresented in
both tract-bound and AD-associated tract-bound ROI
pairs
Gene modules derived from bipartite clustering TTC
gene pairs were enriched in specific molecular pathways,
mostly related to signaling. However, biological pathways
in one region may not reciprocally synchronize the same
pathway in another brain region because each region is
accountable for their own distinct roles. For instance,

our analyses show that CN and ACC were structurally
connected (Additional file 2: Table S1) and literature
supports that they are functionally connected [42]. How-
ever, CN and ACC are enriched in different neuron
types (dopaminergic [43] and spindle neurons [44], re-
spectively) and are responsible for different biological
processes that may be mediated by differing molecular
functions. Using 169 curated pathways as generalizable
domains of molecular functions [31], we investigate how
pathways are differentially interacting between brain re-
gions. We defined pathway interactions specific to tract-
bound ROI pairs based on the chi-square test (P < 0.05,
Additional file 2: Table S5) and the same analysis was
performed for AD-associated tract-bound ROI pairs
(Additional file 2: Table S6). Both pathway networks of
tract-bound ROI pairs (G1) and AD-associated tract-
bound ROI pairs (G2) were made up of nodes that are
signaling related (Fig. 7a, b). G2 had a larger number of
pathway interactions than G1 (Fig. 7c), and the node
with the most number of edges in G2 was toll receptor
signaling pathway (Additional file 2: Table S10). The top
two nodes with the highest number of edges in the G1

Fig. 3 The replicated associations had larger effect sizes than non-replicated associations. The 2D scatter plot of effect sizes in ADNI3 and ADNI2
suggests concordance of associations in the two studies. Red circles are associations replicated in ADNI2, and light-green circles represent non-
replicated associations. a–c The replicated associations in AxD, MD, and RD had larger effect sizes than non-replicated associations. d L-CAB
association with FA had a large effect size relative to other comparisons and was replicated
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Fig. 4 Schematic of brain region network analysis based on genetics. Tissue-to-tissue correlations (TTCs) are calculated between a pair of brain
regions of interest (ROIs) for all gene combinations. Only the significant correlations are preserved (P-value < 1 × 10−8) [17] and are transformed
into binary signals before bipartite clustering (see the “Methods” section for detail). This procedure is repeated for 136 possible brain region pairs
(17 × 16/2). Only the bipartite modules with large number of clustered gene interactions (> 1000) are selected for each ROI producing 272 lists of
genes (2 ROIs × 136). To examine how TTC genes are corroborating on shared molecular functions, pathway analysis is performed where only
curated 169 pathways from PANTHER were examined. Overrepresented pathways were further analyzed (Figs. 6 and 7)

Fig. 5 Total TTC gene counts for each ROI pairs examined. TTC genes were calculated after adjusting for age, sex, post-mortem interval, pH,
ethnicity, and Braak staging scores. a Histogram of total TTC gene counts for all ROI pairs is displayed and top 10th percentile is demarcated by
red dashed line. b ROI pairs are ranked by the total TTC gene counts and red dashed line represents top 10th percentile boundary. Clear circles
are ROI pairs not bound by white matter tract, and all colored circles are ROI pairs bound by tracts where red circles are ROI pairs bound by AD-
associated tracts and blue circles are ROI pairs bound by other tracts. All the ROI pairs below 10th percentile (red dashed line) are made
partially transparent
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were ionotropic glutamate receptor (iGluR) pathway and
toll receptor signaling pathway (Fig. 7c).
Alternatively, TTC genes in ROI pairs may be involved in

shared molecular functions (symmetric synchronization).
We examined pathways associated in both brain regions in
a pair (Additional file 2: Table S11). For genes in TTC gene
pairs of tract-bound ROI pairs, iGluR pathway (P = 0.021),
toll receptor signaling pathway (P = 0.021), inflammation
mediated by chemokine and cytokine signaling pathway
(P = 0.047) were significantly overrepresented (Fig. 7d). For
genes in TTC gene pairs of AD-associated tract-bound re-
gion pairs, toll receptor signaling pathway (P = 0.003), iGluR
pathway (P = 0.013), inflammation mediated by chemokine
and cytokine signaling pathway (P = 0.031), PI3 kinase path-
way (P = 0.031), mGluR group III pathway (P = 0.033),
endothelin signaling pathway (P = 0.036), mGluR group II
pathway (P = 0.036), mGluR group I pathway (P = 0.036), T
cell activation (P = 0.036), 3 adrenergic receptor signaling
pathway (P = 0.036), and mAChR 1 and 3 signaling pathway
(P = 0.044) were preferentially involved (Fig. 7d).

Toll receptor signaling genes in the blood associate with
tract-wise diffusion measures in the brain
Immune activities in the blood may reflect molecular
states in the brain [45]. Because toll receptor signaling

pathway was the most enriched pathway involved in
symmetric synchronization between AD-associated
tract-bound ROI pairs (Fig. 7d), we interrogated how toll
receptor signaling-related genes’ expression in the blood
associated with diffusion measures in the brain. There
were 102 subjects with both blood expression data and
dMRI scans in ADNI2 (the “Methods” section). We ex-
amined the pooled effect of 49 genes representing toll
receptor signaling pathway [31] on diffusion measures of
18 tracts using sum of the chi-square method and com-
pared them with the inferences based on 100,000 per-
mutations [35, 36]. Multiple diffusion measures
including AxD of R-ATR (P = 1.0 × 10−5), R-CCG (P =
1.0 × 10−5), L-UNC (P = 5.6 × 10−4), L-CCG (P = 3.5 ×
10−3), L-ILF (P = 7.5 × 10−3), and R-SLFT (P = 7.6 × 10−3)
were significantly associated with expression of genes in
the toll receptor signaling pathway in the blood (Fig. 8a,
Additional file 2: Table S12). RD (which measures diffu-
sivity orthogonal to AxD) of forceps minor (P = 5.6 ×
10−3) and L-CAB (P = 2.0 × 10−2) was significantly associ-
ated with the expression of toll receptor signaling-
related genes in the blood (Fig. 8c). MD which captures
diffusivity in all directions was associated in forceps
minor (P = 7.6 × 10−3), bilateral CCGs (P = 9.7 × 10−3 and
4.7 × 10−3 left and right respectively), L-CAB (P = 3.4 ×

Fig. 6 Pathways enriched by TTC genes. a Heatmap depicts all pathways overrepresented by TTC genes (FDR < 0.05). Only pathways and ROI
pairs with significant associations are displayed. The rows are pathways, and columns are ROI pairs. In the heatmap, orange points to association
between pathway and one ROI in its ROI pair (asymmetric gene synchronization), and brown is the association between pathway and both ROIs
in its pair (symmetric gene synchronization). Two pathway categories, Pathway Types and Signaling Types are color labeled on the left (see the
“Methods” section for details). ROI pairs are labeled with Tract Info and ROI clusters. ROI clusters is based on hierarchical clustering. b The
association of TTC-associated pathways depending on ROI connections to white matter tracts was examined (see the “Methods” section for
details). Each circle represents pathways where green circles are tract-dependent and red circles are AD-associated tract-dependent. Associations
are −log10 transformed (Y-axis), and 169 pathways are organized by Signaling Types in the X-axis (different background color in the scatter plot).
The pathways associated in both tract-dependent and AD-associated tract-dependent manner are indicated by arrows with pathway names.
Orange dashed line delineates P-value = 0.05, and circles below this nominal significance are made partially transparent
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10−2), L-SLFP (P = 1.5 × 10−5), and L-SLFT (P = 2.7 ×
10−2) (Fig. 8b). FA which describes white matter integ-
rity was associated in bilateral CABs (P = 1.0 × 10−2 and
4.9 × 10−4 left and right respectively) and R-CCG (P =
4.7 × 10−2) (Fig. 8d). Similar to diagnosis associations
(Table 2), we did not observe any toll receptor signaling
gene expression association with bilateral CST and for-
ceps major which are responsible for motor and visual
functions.

Discussion
Tissues, organs and cell groups within organs, commu-
nicate with one another to perform biological functions
in concert, and gene transcriptions are synchronized be-
tween tissues reflecting cross-tissue and cross-cell-group
communications [17, 18]. In the brain, white matter
tracts serve as an important medium of brain regional
cross-talk [46–48], and we observed that large numbers
of genes were synchronized at the transcriptional level

Fig. 7 Ionotropic glutamate receptor (iGluR) and Toll receptor signaling pathways play key role in TTC genes across white matter tracts. Pathway
interactions unique to ROI pairs depending on tract connections were examined using chi-square tests. The pathway interactions with nominal
significance (P < 0.05) are illustrated as network edges and were drawn for a tract-bound (G1) and b AD-tract-bound (G2). The nodes are 169
pathways, and they are differentially colored by Pathway Types. Node boundary is color labeled by Signaling Types. The graph was constructed
by Spring-Affinity algorithm. c The nodal degrees in both graphs G1 (blue) and G2 (red) are ranked for 83 pathways notated in Fig. 6a. Degree for
iGluR pathway (cyan circle) and Toll receptor signaling pathway (orange circle) is overlaid in the plot. d Fisher exact test results for symmetric
gene synchronization of pathways across tract-bound ROI pairs (green circles) and AD-tract-bound ROI pairs (red circles) are visualized. The circles
are molecular pathways and are organized by Signaling Types in the X-axis. The Y-axis shows P-values that are negative log10 transformed. The
TTC genes synchronized at the pathway level in both tract-bound and AD-associated tract-bound ROI pairs are indicated by arrows with pathway
names. Orange dashed line delineates P-value = 0.05, and circles below this nominal significance were made partially transparent
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in tract-bound brain regions (Fig. 5b). Gene modules de-
rived from bipartite clustering of TTC gene pairs be-
tween tract-bound brain regions were significantly over-
represented in signaling pathways (Fig. 6). Since axon
bundles with synaptic connections constitute white mat-
ter tracts, identifying associations between mAChR,
mGluR, and iGluR signaling pathways and TTC gene
pairs were within our expectations (Fig. 6b). Toll recep-
tor signaling pathway was the most enriched pathway in
the symmetric gene synchronization between AD-
associated tract-bound brain regions (Fig. 7). There are
at least two potential mechanisms: (1) Toll-like receptor
(TLR) signaling plays a role in brain region-to-region
communication via white matter tract and (2) TLR sig-
naling pathways in brain regions and in the blood are
synchronized [49]. The association between diffusion
measures in major tracts and toll receptor signaling
pathway activity in blood convolutes the two potential
mechanisms. Although the mechanism is not clear, our
results suggest the immune system’s involvement in AD-
associated brain region-to-region cross-talk.
TLRs play important roles in innate immunity in

humans, and TLR activation in microglia due to neuro-
peptide aggregation is well established [50, 51]. However,
the expression of TLRs is not limited to microglia [52, 53],
but is also present in astrocytes [54], oligodendrocytes
[55], neural progenitor cells [56, 57], and neurons [58].
The biology of TLRs is complex and goes beyond just rec-
ognizing pathogen-associated molecular patterns [59].
TLR3 can recognize double-stranded RNA for its activa-
tion [60], and the signaling cascade of TLRs varies for dif-
ferent neuronal cell types [61]. TLR2 and TLR4 are
known to regulate hippocampal adult neurogenesis and
neural progenitor cell differentiation [62]. TLR3 is associ-
ated with increased mature neurons in the hippocampus
and enlarged dentate gyrus and the CA1 region [56].

TLR3 and TLR8 are present in the axonal tracts during
the brain development and regulate neurite outgrowth
and apoptosis [63–65]. In addition, differential expression
of TLRs in human post-mortem brains are associated with
alcohol addiction [66], depression [67, 68], and schizo-
phrenia [69], and these neurological disorders are also as-
sociated with white matter abnormalities [70–72].
However, it is not known how TLRs may act on axonal
degeneration and cross-communication between brain re-
gions via axon fibers.
Diffusion-weighted imaging is a powerful tool in assessing

microstructural changes of white matter in vivo, and diffu-
sion parameters can capture white matter integrity [1]. In
our work, TLR signaling expressions were associated with
FA in bilateral CABs (Fig. 8). Because CABs have a strong
connection to the hippocampus, white matter integrity
measured by FA may be regulated by TLR signaling in the
hippocampus and TLR-dependent adult neurogenesis [62].
AxD estimates parallel diffusivity along the direction of the
highest diffusion and was significantly associated with ex-
pression of TLR signaling for bilateral-CCG, L-UNC, R-
ATR, L-ILF, and R-SLFT. This suggests that TLR signaling
may be involved in the loss of barriers restricting water dif-
fusion in the associated tracts such as myelination level re-
duction or axon losses [73–75]. Although the association
between diagnosis and diffusion measures in L-ILF and R-
SLFT was replicated in the ADNI2 cohort, L-UNC, R-ATR,
and R-CCG findings failed to replicate in the ADNI2 cohort
(Table 2). L-CCG was only nominally significant (FDR <
0.1) in both ADNI3 and ADNI2 cohorts (Table 2). This
suggests that expression variation of genes in the TLR sig-
naling pathway might be more powerful in detecting micro-
scopic white matter abnormalities in comparison to
diagnosis status, and further study may allow developing
blood biomarkers relevant to disease-associated white mat-
ter changes in vivo.

Fig. 8 Toll receptor signaling-related gene expression in the blood associate with diffusion properties in the white matter. Gene expression in the
blood and dMRI scans in shared subjects were analyzed (n = 102). The transcriptome effects of toll receptor signaling pathway on a AxD, b MD, c
RD, and d FA in the 18 tracts were aggregated, and its en masse effect was approximated using 100,000x permutation. In all bar plots, AD-
associated tracts replicated in two cohorts are in red, and other tracts are in blue. Orange dashed line represents P-value = 0.05 threshold
for significance
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The sample size of ADNI3 was larger than the size of
ADNI2 so that the ADNI3 study had a higher power to
identify AD associations in diffusion imaging and not all
associations were expected to be significant in the
ADNI2. Besides the sample size, there were technical
differences between the two cohorts [39, 76]. ADNI2
data was collected using older MR pulse sequence and
was captured at 2.7-mm3 resolution. ADNI3 adopted the
optimized protocol established by Human Connectome
Project as the standard across multiple centers and
gained higher resolution at 2.0 mm3 [11]. There were 16
and 50 research sites involved in ADNI2 and ADNI3
studies, respectively. Four hundred nine out of 499 im-
ages in the ADNI3 dataset were acquired from 37 re-
search sites that were not included in the ADNI2
(Additional file 2: Table S13). The results from the
multi-center studies are unlikely due to biases from a few
sites. As noted in the “Methods” section, we included only
imaging data of participants that were unique to ADNI3
as the ADNI3 cohort so that there was no overlap be-
tween the ADNI2 and ADNI3 cohorts in our analyses.
The identified imaging-based disease associations were
also consistent with known findings [77, 78]. All these re-
sults together suggest that the associations between neu-
roimaging features and AD are robust to the differences
between ADNI3 and ADNI2. Additionally, the replicated
associations had larger effect size than the non-replicated
ones, suggesting associations of smaller effect sizes require
a larger sample size to validate.
There are limitations in our analyses and ADNI stud-

ies in general. Majority of the participants in the ADNI2
and ADNI3 studies were white (91.4% and 93.6%, re-
spectively). Even though some common associations be-
tween neuroimaging features and AD were identified in
ADNI2 and ADNI3 cohorts, whether the associations
hold in other ethnic groups needs further studies. Add-
itionally, there were only 17 brain regions available to
construct transcriptome-based brain connectome. The
limited spatial resolution of this work may increase false
negatives. The Allen Human Brain Atlas has more
complete coverage of the brain spatially [79], but is lim-
ited to only 6 individuals whereas we conducted our
study using 30–51 subjects depending on the brain re-
gion. Although spatially limited, our work is much better
powered than the Allen Human Brain Atlas in examin-
ing correlated expression between brain regions and
should better reflect the population information. An-
other limitation is that our study only examined gene
synchronization by major white matter tracts whereas
gene synchronization between two brain regions may be
mediated through multiple mechanisms, including (1)
direct neighbor (cis), (2) WM connected (trans), and (3)
functionally connected (multi). Future works are needed
to address these different gene synchronization models.

Conclusion
Overall, this is the first study that investigates brain con-
nectomes of white matter tracts and gene
synchronization in human brains. For this, we developed
a method that directly examines the enrichment of TTC
genes in tract-bound brain regions and further per-
formed molecular network analysis based on tract-wise
connection information. Despite various limitations, we
report that TTCs of genes in signaling pathways were
significantly associated with brain regional cross-talk
through white matter tracts. We further report that
iGluR and toll receptor signaling pathways play a pivotal
role in region-to-region communication and synaptic
and immune interplay between brain regions may posit
novel insights towards AD etiology.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12916-019-1488-1.

Additional file 1: Supplementary figures.

Additional file 2: Table S1. Probability of tract reaching brain region
(Reach probability). Table S2. Brain region mapping between Desikan-
Killany atlas and post-mortem brain labels. Table S3. Number of Tissue-
to-Tissue (TTC) correlated genes for each pair of Region-of-interests (ROIs).
Table S4. Pathway list with annotated subtypes. Table S5. Pathway
interactions in brain region pairs that are that are significantly different in
tract-bound. Table S6. Pathway interactions in brain region pairs that are
that are significantly different in AD-tract-bound. Table S7. Association
between covariates and diffusion measures in each tract. Table S8. Effect
sizes for associations in ADNI3 and ADNI2. Table S9. Pathway over-
representation analysis between brain region pairs connected by white
matter tracts and region pairs not connected by tracts. Table S10.
Pathway interaction graph (degree). Table S11. Pathway over-
representation analysis of symmetric gene synchronization in brain re-
gion pairs connected by white matter tracts. Table S12. Association
between gene expression of Toll receptor signaling in the blood and
diffusion measures in the brain. Table S13. Number of subjects in
each study per site.

Abbreviations
ACC: Anterior cingulate cortex; AD: Alzheimer’s disease; ADNI: Alzheimer’s
Disease Neuroimaging Initiative; AxD: Axial diffusivity; CN: Caudate nucleus;
DLPFC: Dorsolateral prefrontal cortex; dMRI: Diffusion MRI; FA: Fractional
anisotropy; FDR: False discovery rate; FMajor: Forceps major; Fminor: Forceps
minor; FP: Frontal pole; HIP: Hippocampus; IFC: Inferior frontal cortex;
iGluR: Ionotropic glutamate receptor; ITG: Inferior temporal gyrus; L-ATR: Left
anterior thalamic; L-CAB: Left cingulum—angular bundle; L-CCG: Left
cingulum—cingulate gyrus; L-CST: Left corticospinal tract; L-ILF: Left inferior
longitudinal fasciculus; L-SLFP: Left superior longitudinal fasciculus parietal;
L-SLFT: Left superior longitudinal fasciculus temporal; L-UNC: Left uncinate
fasciculus; mAChR: Muscarinic acetylcholine receptor; MCI: Mild cognitive
impaired; MD: Mean diffusivity; mGluR: Metabotropic glutamate receptor;
MRI: Magnetic resonance imaging; MTG: Middle temporal gyrus;
OVC: Occipital visual cortex; PANTHER: Protein Analysis Through Evolutionary
Relationships; PCC: Posterior cingulate cortex; PCG: Precentral gyrus;
PFC: Prefrontal cortex; PHG: Parahippocampal gyrus; PUT: Putamen;
QC: Quality check; R-ATR: Right anterior thalamic radiations; R-CAB: Right
cingulum—angular bundle; R-CCG: Right cingulum—cingulate gyrus;
R-CST: Right corticospinal tract; RD: Radial diffusivity; R-ILF: Right inferior
longitudinal fasciculus; ROI: Region of interest; R-SLFP: Right superior
longitudinal fasciculus parietal; R-SLFT: Right superior longitudinal fasciculus
temporal; R-UNC: Right uncinate fasciculus; SPL: Superior parietal lobule;
STG: Superior temporal gyrus; TBV: Total brain volume; TLRs: Toll-like

Woo et al. BMC Medicine           (2020) 18:23 Page 14 of 17

https://doi.org/10.1186/s12916-019-1488-1
https://doi.org/10.1186/s12916-019-1488-1


receptors; TP: Temporal pole; TRACULA: TRActs Constrained by UnderLying
Anatomy; TTCs: Tissue-to-tissue correlations

Acknowledgements
Data collection and sharing for this project was funded by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant
U01 AG024904) and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering, and through
generous contributions from the following: AbbVie, Alzheimer’s Association;
Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.;
Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan
Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La
Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE
Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research &
Development, LLC.; Johnson & Johnson Pharmaceutical Research &
Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale
Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda
Pharmaceutical Company; and Transition Therapeutics. The Canadian
Institutes of Health Research is providing funds to support ADNI clinical sites
in Canada. Private sector contributions are facilitated by the Foundation for
the National Institutes of Health (www.fnih.org). The grantee organization is
the Northern California Institute for Research and Education, and the study is
coordinated by the Alzheimer’s Therapeutic Research Institute at the
University of Southern California. ADNI data are disseminated by the
Laboratory for Neuro Imaging at the University of Southern California.

Declarations
This is not a human study. All data used in the study are from public
databases. No new data is generated in the study.

Authors’ contributions
YJW and JZ conceived and designed the study. VH, PK, and RP contributed
to the sample collection and microarray experiments. ADNI provided
neuroimaging data, relevant clinical data, and blood transcriptome data. YJW
and JZ contributed to the data analysis and its interpretation. YJW and JZ
wrote and edited the manuscript. All authors contributed to the result
interpretation and discussion. All authors read and approved the final
manuscript.

Funding
The study is partially supported by NIH AG046170 (VH, SG, EES, JZ),
HG008451 (JZ), and AG024904 (ADNI).

Availability of data and materials
ADNI is available at http://adni.loni.usc.edu. Post-mortem transcriptome data
is available at GSE84422.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Genetics and Genomic Sciences, Icahn School of Medicine at
Mount Sinai, New York, NY 10029, USA. 2Department of Psychiatry, Icahn
School of Medicine at Mount Sinai, New York, NY 10029, USA. 3Department
of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
10029, USA. 4Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA. 5Sema4, Stamford, CT 06902, USA.

Received: 3 July 2019 Accepted: 24 December 2019

References
1. Shi Y, Toga AW. Connectome imaging for mapping human brain pathways.

Mol Psychiatry. 2017;22:1230–40. https://doi.org/10.1038/mp.2017.92.
2. Smith SM, Beckmann CF, Andersson J, Auerbach EJ, Bijsterbosch J, Douaud

G, et al. Resting-state fMRI in the Human Connectome Project. Neuroimage.
2013;80:144–68.

3. Filippi M, Basaia S, Canu E, Imperiale F, Magnani G, Falautano M, et al.
Changes in functional and structural brain connectome along the

Alzheimer’s disease continuum. Mol Psychiatry. 2018. https://doi.org/10.
1038/s41380-018-0067-8.

4. Brier MR, Thomas JB, Ances BM. Network dysfunction in Alzheimer’s disease:
refining the disconnection hypothesis. Brain Connect. 2014;4:299–311.
https://doi.org/10.1089/brain.2014.0236.

5. Sporns O. Contributions and challenges for network models in cognitive
neuroscience. Nat Neurosci. 2014;17:652–60. https://doi.org/10.1038/nn.3690.

6. Wolf L, Goldberg C, Manor N, Sharan R, Ruppin E. Gene expression in the
rodent brain is associated with its regional connectivity. PLoS Comput Biol.
2011;7.

7. French L, Pavlidis P. Relationships between gene expression and brain
wiring in the adult rodent brain. PLoS Comput Biol. 2011;7:e1001049.
https://doi.org/10.1371/journal.pcbi.1001049.

8. Richiardi J, Altmann A, Jonas R. Correlated gene expression supports
synchronous activity in brain networks. Science (80- ). 2015;348:11–4.
https://doi.org/10.1126/science.1255905.

9. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al.
Integrated systems approach identifies genetic nodes and networks in late-
onset Alzheimer’s disease. Cell. 2013;153:707–20. https://doi.org/10.1016/j.
cell.2013.03.030.

10. Raj T, Li YI, Wong G, Humphrey J, Wang M, Ramdhani S, et al. Integrative
transcriptome analyses of the aging brain implicate altered splicing in
Alzheimer’s disease susceptibility. Nat Genet. 2018;50:1584–92. https://doi.
org/10.1038/s41588-018-0238-1.

11. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. The
Alzheimer’s Disease Neuroimaging Initiative 3: continued innovation for
clinical trial improvement. Alzheimer’s Dementia. 2017;13:561–71. https://
doi.org/10.1016/j.jalz.2016.10.006.

12. Haroutunian V, Katsel P, Schmeidler J. Transcriptional vulnerability of brain
regions in Alzheimer’s disease and dementia. Neurobiol Aging. 2009;30:561–
73. https://doi.org/10.1016/j.neurobiolaging.2007.07.021.

13. Wang M, Roussos P, McKenzie A, Zhou X, Kajiwara Y, Brennand KJ, et al.
Integrative network analysis of nineteen brain regions identifies molecular
signatures and networks underlying selective regional vulnerability to
Alzheimer’s disease. Genome Med. 2016;8:104. https://doi.org/10.1186/
s13073-016-0355-3.

14. Woo YJ, Wang T, Guadalupe T, Nebel RA, Vino A, Del Bene VA, et al. A
common CYFIP1 variant at the 15q11.2 disease locus is associated with
structural variation at the language-related left supramarginal gyrus. PLoS
One. 2016;11:e0158036. https://doi.org/10.1371/journal.pone.0158036.

15. Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, et al.
Identification of common variants associated with human hippocampal and
intracranial volumes. Nat Genet. 2012;44. https://doi.org/10.1038/ng.2250.

16. Munafò MR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Percie Du
Sert N, et al. A manifesto for reproducible science. Nat Hum Behav. 2017;1:
1–9. https://doi.org/10.1038/s41562-016-0021.

17. Dobrin R, Zhu J, Molony C, Argman C, Parrish ML, Carlson S, et al. Multi-tissue
coexpression networks reveal unexpected subnetworks associated with
disease. Genome Biol. 2009;10:R55. https://doi.org/10.1186/gb-2009-10-5-r55.

18. Long Q, Argmann C, Houten SM, Huang T, Peng S, Zhao Y, et al. Inter-tissue
coexpression network analysis reveals DPP4 as an important gene in heart
to blood communication. Genome Med. 2016;8:15. https://doi.org/10.1186/
s13073-016-0268-1.

19. Li X, Morgan PS, Ashburner J, Smith J, Rorden C. The first step for
neuroimaging data analysis: DICOM to NIfTI conversion. J Neurosci
Methods. 2016;264:47–56. https://doi.org/10.1016/j.jneumeth.2016.03.001.

20. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH,
et al. Automatically parcellating the human cerebral cortex. Cereb Cortex.
2004;14:11–22. https://doi.org/10.1093/cercor/bhg087.

21. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An
automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.
https://doi.org/10.1016/j.neuroimage.2006.01.021.

22. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL.
Neuroimage. 2012;62:782–90. https://doi.org/10.1016/j.neuroimage.2011.
09.015.

23. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic
diffusion tractography with multiple fibre orientations: what can we gain?
Neuroimage. 2007;34:144–55. https://doi.org/10.1016/j.neuroimage.2006.09.018.

24. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ,
Johansen-Berg H, et al. Advances in functional and structural MR image

Woo et al. BMC Medicine           (2020) 18:23 Page 15 of 17

http://www.fnih.org
http://adni.loni.usc.edu
https://doi.org/10.1038/mp.2017.92
https://doi.org/10.1038/s41380-018-0067-8
https://doi.org/10.1038/s41380-018-0067-8
https://doi.org/10.1089/brain.2014.0236
https://doi.org/10.1038/nn.3690
https://doi.org/10.1371/journal.pcbi.1001049
https://doi.org/10.1126/science.1255905
https://doi.org/10.1016/j.cell.2013.03.030
https://doi.org/10.1016/j.cell.2013.03.030
https://doi.org/10.1038/s41588-018-0238-1
https://doi.org/10.1038/s41588-018-0238-1
https://doi.org/10.1016/j.jalz.2016.10.006
https://doi.org/10.1016/j.jalz.2016.10.006
https://doi.org/10.1016/j.neurobiolaging.2007.07.021
https://doi.org/10.1186/s13073-016-0355-3
https://doi.org/10.1186/s13073-016-0355-3
https://doi.org/10.1371/journal.pone.0158036
https://doi.org/10.1038/ng.2250
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1186/gb-2009-10-5-r55
https://doi.org/10.1186/s13073-016-0268-1
https://doi.org/10.1186/s13073-016-0268-1
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1093/cercor/bhg087
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2006.09.018


analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208–19.
https://doi.org/10.1016/j.neuroimage.2004.07.051.

25. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott
CAM, Boulby PA, et al. Non-invasive mapping of connections between
human thalamus and cortex using diffusion imaging. Nat Neurosci. 2003;6:
750–7. https://doi.org/10.1038/nn1075.

26. Yendiki A, Panneck P, Srinivasan P, Stevens A, Zöllei L, Augustinack J, et al.
Automated probabilistic reconstruction of white-matter pathways in health
and disease using an atlas of the underlying anatomy. Front Neuroinform.
2011;:23. doi:https://doi.org/10.3389/fninf.2011.00023.

27. Barber MJ. Modularity and community detection in bipartite networks. Phys
Rev E Stat Nonlin Soft Matter Phys. 2007;76 6 Pt 2:066102. doi:https://doi.
org/10.1103/PhysRevE.76.066102.

28. Liu X, Murata T. An efficient algorithm for optimizing bipartite modularity in
bipartite networks. J Adv Comput Intell Intell Informatics. 2010;14:408–15.
https://doi.org/10.20965/jaciii.2010.p0408.

29. Costa A, Hansen P. A locally optimal hierarchical divisive heuristic for
bipartite modularity maximization. Optim Lett. 2014;8:903–17. https://doi.
org/10.1007/s11590-013-0621-x.

30. Beckett SJ. Improved community detection in weighted bipartite networks
subject category : subject areas : author for correspondence : R Soc open
Sci; 2016.

31. Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, et al. Protocol
update for large-scale genome and gene function analysis with the
PANTHER classification system (v.14.0). Nat Protoc. 2019;14:703–21. https://
doi.org/10.1038/s41596-019-0128-8.

32. Saykin AJ, Shen L, Yao X, Kim S, Nho K, Risacher SL, et al. Genetic studies of
quantitative MCI and AD phenotypes in ADNI: progress, opportunities, and
plans. Alzheimers Dement. 2015;11:792–814. https://doi.org/10.1016/j.jalz.
2015.05.009.

33. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.
Exploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics. 2003;4:249–64. https://doi.org/10.1093/
biostatistics/4.2.249.

34. Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR, et al.
Strategies for aggregating gene expression data: the collapseRows R
function. BMC Bioinformatics. 2011;12:322. https://doi.org/10.1186/1471-
2105-12-322.

35. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A
versatile gene-based test for genome-wide association studies. Am J Hum
Genet. 2010;87:139–45. https://doi.org/10.1016/j.ajhg.2010.06.009.

36. Wang T, Zhou B, Guo T, Bidlingmaier M, Wallaschofski H, Teumer A, et al. A
robust method for genome-wide association meta-analysis with the
application to circulating insulin-like growth factor I concentrations. Genet
Epidemiol. 2014;38:162–71. https://doi.org/10.1002/gepi.21766.

37. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to
numerical computing. SIAM Rev. 2017;59:65–98. https://doi.org/10.1137/
141000671.

38. R Core Team. R: a language and environment for statistical computing.
2019. https://www.r-project.org/.

39. Zavaliangos-Petropulu A, Nir TM, Thomopoulos SI, Reid RI, Bernstein MA,
Borowski B, et al. Diffusion MRI indices and their relation to cognitive
impairment in brain aging: the updated multi-protocol approach in ADNI3.
Front Neuroinform. 2019;13 February:2. doi:https://doi.org/10.3389/fninf.
2019.00002.

40. Araque Caballero MÁ, Suárez-Calvet M, Duering M, Franzmeier N, Benzinger
T, Fagan AM, et al. White matter diffusion alterations precede symptom
onset in autosomal dominant Alzheimer’s disease. Brain. 2018;141:3065–80.
https://doi.org/10.1093/brain/awy229.

41. Weiner MW, Aisen PS, Jack CR, Jagust WJ, Trojanowski JQ, Shaw L, et al. The
Alzheimer’s disease neuroimaging initiative: progress report and future
plans. Alzheimers Dement. 2010;6:202–11.e7. https://doi.org/10.1016/j.jalz.
2010.03.007.

42. Robinson JL, Laird AR, Glahn DC, Blangero J, Sanghera MK, Pessoa L, et al.
The functional connectivity of the human caudate: an application of meta-
analytic connectivity modeling with behavioral filtering. Neuroimage. 2012;
60:117–29. https://doi.org/10.1016/j.neuroimage.2011.12.010.

43. Nakamura K, Hikosaka O. Role of dopamine in the primate caudate nucleus
in reward modulation of saccades. J Neurosci. 2006;26:5360–9. https://doi.
org/10.1523/JNEUROSCI.4853-05.2006.

44. Nimchinsky EA, Vogt BA, Morrison JH, Hof PR. Spindle neurons of the
human anterior cingulate cortex. J Comp Neurol. 1995;355:27–37. https://
doi.org/10.1002/cne.903550106.

45. Sankowski R, Mader S, Valdés-Ferrer SI. Systemic inflammation and the brain:
novel roles of genetic, molecular, and environmental cues as drivers of
neurodegeneration. Front Cell Neurosci. 2015;28. doi:https://doi.org/10.3389/
fncel.2015.00028.

46. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al.
Predicting human resting-state functional connectivity from structural
connectivity. Proc Natl Acad Sci U S A. 2009;106:2035–40. https://doi.org/10.
1073/pnas.0811168106.

47. van den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE. Functionally
linked resting-state networks reflect the underlying structural connectivity
architecture of the human brain. Hum Brain Mapp. 2009;30:3127–41. https://
doi.org/10.1002/hbm.20737.

48. Peer M, Nitzan M, Bick AS, Levin N, Arzy S. Evidence for functional networks
within the human brain’s white matter. J Neurosci. 2017;37:6394–407.
https://doi.org/10.1523/JNEUROSCI.3872-16.2017.

49. Stolp HB, Liddelow SA, Sá-Pereira I, Dziegielewska KM, Saunders NR.
Immune responses at brain barriers and implications for brain development
and neurological function in later life. Front Integr Neurosci. 2013;1–14.

50. Letiembre M, Liu Y, Walter S, Hao W, Pfander T, Wrede A, et al. Screening of
innate immune receptors in neurodegenerative diseases: a similar pattern.
Neurobiol Aging. 2009;30:759–68. https://doi.org/10.1016/j.neurobiolaging.
2007.08.018.

51. Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, et al.
LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid
peptide. Brain. 2005;128(Pt 8):1778–89. https://doi.org/10.1093/brain/
awh531.

52. Olson JK, Miller SD. Microglia initiate central nervous system innate and
adaptive immune responses through multiple TLRs. J Immunol. 2004;173:
3916–24. https://doi.org/10.4049/jimmunol.173.6.3916.

53. Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, et al.
Transcriptomic analysis of purified human cortical microglia reveals age-associated
changes. Nat Neurosci. 2017;20:1162–71. https://doi.org/10.1038/nn.4597.

54. Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM.
Astrocyte TLR4 activation induces a proinflammatory environment through
the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/
Stat1 pathways. Glia. 2011;59:242–55. https://doi.org/10.1002/glia.21094.

55. Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, et al. A
mechanism for neurodegeneration induced by group B streptococci
through activation of the TLR2/MyD88 pathway in microglia. J Immunol.
2006;177:583–92. https://doi.org/10.4049/jimmunol.177.1.583.

56. Okun E, Griffioen K, Barak B, Roberts NJ, Castro K, Pita MA, et al. Toll-like
receptor 3 inhibits memory retention and constrains adult hippocampal
neurogenesis. Proc Natl Acad Sci U S A. 2010;107:15625–30. https://doi.org/
10.1073/pnas.1005807107.

57. Lathia JD, Okun E, Tang S-C, Griffioen K, Cheng A, Mughal MR, et al. Toll-like
receptor 3 is a negative regulator of embryonic neural progenitor cell
proliferation. J Neurosci. 2008;28:13978–84. https://doi.org/10.1523/
JNEUROSCI.2140-08.2008.

58. Tang S-C, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, et al. Pivotal
role for neuronal Toll-like receptors in ischemic brain injury and functional
deficits. Proc Natl Acad Sci U S A. 2007;104:13798–803. https://doi.org/10.
1073/pnas.0702553104.

59. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate
receptors in infection and immunity. Immunity. 2011;34:637–50. https://doi.
org/10.1016/j.immuni.2011.05.006.

60. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-
stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature.
2001;413:732–8. https://doi.org/10.1038/35099560.

61. Okun E, Griffioen KJ, Mattson MP. Toll-like receptor signaling in neural
plasticity and disease. Trends Neurosci. 2011;34:269–81. https://doi.org/10.
1016/j.tins.2011.02.005.

62. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, et al. Toll-like
receptors modulate adult hippocampal neurogenesis. Nat Cell Biol. 2007;9:
1081–8. https://doi.org/10.1038/ncb1629.

63. Ma Y, Haynes RL, Sidman RL, Vartanian T. TLR8: an innate immune receptor
in brain, neurons and axons. Cell Cycle. 2007;6:2859–68. https://doi.org/10.
4161/cc.6.23.5018.

Woo et al. BMC Medicine           (2020) 18:23 Page 16 of 17

https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1038/nn1075
https://doi.org/10.3389/fninf.2011.00023
https://doi.org/10.1103/PhysRevE.76.066102
https://doi.org/10.1103/PhysRevE.76.066102
https://doi.org/10.20965/jaciii.2010.p0408
https://doi.org/10.1007/s11590-013-0621-x
https://doi.org/10.1007/s11590-013-0621-x
https://doi.org/10.1038/s41596-019-0128-8
https://doi.org/10.1038/s41596-019-0128-8
https://doi.org/10.1016/j.jalz.2015.05.009
https://doi.org/10.1016/j.jalz.2015.05.009
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1186/1471-2105-12-322
https://doi.org/10.1186/1471-2105-12-322
https://doi.org/10.1016/j.ajhg.2010.06.009
https://doi.org/10.1002/gepi.21766
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://www.r-project.org/
https://doi.org/10.3389/fninf.2019.00002
https://doi.org/10.3389/fninf.2019.00002
https://doi.org/10.1093/brain/awy229
https://doi.org/10.1016/j.jalz.2010.03.007
https://doi.org/10.1016/j.jalz.2010.03.007
https://doi.org/10.1016/j.neuroimage.2011.12.010
https://doi.org/10.1523/JNEUROSCI.4853-05.2006
https://doi.org/10.1523/JNEUROSCI.4853-05.2006
https://doi.org/10.1002/cne.903550106
https://doi.org/10.1002/cne.903550106
https://doi.org/10.3389/fncel.2015.00028
https://doi.org/10.3389/fncel.2015.00028
https://doi.org/10.1073/pnas.0811168106
https://doi.org/10.1073/pnas.0811168106
https://doi.org/10.1002/hbm.20737
https://doi.org/10.1002/hbm.20737
https://doi.org/10.1523/JNEUROSCI.3872-16.2017
https://doi.org/10.1016/j.neurobiolaging.2007.08.018
https://doi.org/10.1016/j.neurobiolaging.2007.08.018
https://doi.org/10.1093/brain/awh531
https://doi.org/10.1093/brain/awh531
https://doi.org/10.4049/jimmunol.173.6.3916
https://doi.org/10.1038/nn.4597
https://doi.org/10.1002/glia.21094
https://doi.org/10.4049/jimmunol.177.1.583
https://doi.org/10.1073/pnas.1005807107
https://doi.org/10.1073/pnas.1005807107
https://doi.org/10.1523/JNEUROSCI.2140-08.2008
https://doi.org/10.1523/JNEUROSCI.2140-08.2008
https://doi.org/10.1073/pnas.0702553104
https://doi.org/10.1073/pnas.0702553104
https://doi.org/10.1016/j.immuni.2011.05.006
https://doi.org/10.1016/j.immuni.2011.05.006
https://doi.org/10.1038/35099560
https://doi.org/10.1016/j.tins.2011.02.005
https://doi.org/10.1016/j.tins.2011.02.005
https://doi.org/10.1038/ncb1629
https://doi.org/10.4161/cc.6.23.5018
https://doi.org/10.4161/cc.6.23.5018


64. Ma Y, Li J, Chiu I, Wang Y, Sloane JA, Lü J, et al. Toll-like receptor 8 functions
as a negative regulator of neurite outgrowth and inducer of neuronal
apoptosis. J Cell Biol. 2006;175:209–15. https://doi.org/10.1083/jcb.
200606016.

65. Cameron JS, Alexopoulou L, Sloane JA, DiBernardo AB, Ma Y, Kosaras B,
et al. Toll-like receptor 3 is a potent negative regulator of axonal growth in
mammals. J Neurosci. 2007;27:13033–41. https://doi.org/10.1523/JNEUROSCI.
4290-06.2007.

66. Crews FT, Qin L, Sheedy D, Vetreno RP, Zou J. High mobility group box 1/
Toll-like receptor danger signaling increases brain neuroimmune activation
in alcohol dependence. Biol Psychiatry. 2013;73:602–12. https://doi.org/10.
1016/j.biopsych.2012.09.030.

67. Pandey GN, Rizavi HS, Ren X, Bhaumik R, Dwivedi Y. Toll-like receptors in
the depressed and suicide brain. J Psychiatr Res. 2014;53:62–8. https://doi.
org/10.1016/j.jpsychires.2014.01.021.

68. Pandey GN, Rizavi HS, Bhaumik R, Ren X. Innate immunity in the
postmortem brain of depressed and suicide subjects: role of Toll-like
receptors. Brain Behav Immun. 2019;75:101–11. https://doi.org/10.1016/j.bbi.
2018.09.024.

69. García-Bueno B, Gassó P, MacDowell KS, Callado LF, Mas S, Bernardo M,
et al. Evidence of activation of the Toll-like receptor-4 proinflammatory
pathway in patients with schizophrenia. J Psychiatry Neurosci. 2016;41:E46–
55 http://www.ncbi.nlm.nih.gov/pubmed/27070349.

70. Pfefferbaum A, Rosenbloom M, Rohlfing T, Sullivan EV. Degradation of
association and projection white matter systems in alcoholism detected
with quantitative fiber tracking. Biol Psychiatry. 2009;65:680–90. https://doi.
org/10.1016/j.biopsych.2008.10.039.

71. Najjar S, Pearlman DM. Neuroinflammation and white matter pathology in
schizophrenia: systematic review. Schizophr Res. 2015;161:102–12. https://
doi.org/10.1016/j.schres.2014.04.041.

72. Shen X, Reus LM, Cox SR, Adams MJ, Liewald DC, Bastin ME, et al.
Subcortical volume and white matter integrity abnormalities in major
depressive disorder: findings from UK Biobank imaging data. Sci Rep. 2017;7:
5547. https://doi.org/10.1038/s41598-017-05507-6.

73. Song S-K, Sun S-W, Ju W-K, Lin S-J, Cross AH, Neufeld AH. Diffusion tensor
imaging detects and differentiates axon and myelin degeneration in mouse
optic nerve after retinal ischemia. Neuroimage. 2003;20:1714–22. https://doi.
org/10.1016/j.neuroimage.2003.07.005.

74. Song S-K, Yoshino J, Le TQ, Lin S-J, Sun S-W, Cross AH, et al. Demyelination
increases radial diffusivity in corpus callosum of mouse brain. Neuroimage.
2005;26:132–40. https://doi.org/10.1016/j.neuroimage.2005.01.028.

75. Sun S-W, Liang H-F, Trinkaus K, Cross AH, Armstrong RC, Song S-K.
Noninvasive detection of cuprizone induced axonal damage and
demyelination in the mouse corpus callosum. Magn Reson Med. 2006;55:
302–8. https://doi.org/10.1002/mrm.20774.

76. Nir TM, Jahanshad N, Villalon-Reina JE, Toga AW, Jack CR, Weiner MW, et al.
Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease,
MCI, and normal aging. NeuroImage Clin. 2013;3:180–95. https://doi.org/10.
1016/j.nicl.2013.07.006.

77. Lee SH, Coutu JP, Wilkens P, Yendiki A, Rosas HD, Salat DH. Tract-based
analysis of white matter degeneration in Alzheimer’s disease. Neuroscience.
2015;301:79–89. https://doi.org/10.1016/j.neuroscience.2015.05.049.

78. Liu Y, Spulber G, Lehtimäki KK, Könönen M, Hallikainen I, Gröhn H, et al.
Diffusion tensor imaging and tract-based spatial statistics in Alzheimer’s
disease and mild cognitive impairment. Neurobiol Aging. 2011;32:1558–71.
https://doi.org/10.1016/j.neurobiolaging.2009.10.006.

79. Hawrylycz M, Miller JA, Menon V, Feng D, Dolbeare T, Guillozet-Bongaarts
AL, et al. Canonical genetic signatures of the adult human brain. Nat
Neurosci. 2015;18:1832–44. https://doi.org/10.1038/nn.4171.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Woo et al. BMC Medicine           (2020) 18:23 Page 17 of 17

https://doi.org/10.1083/jcb.200606016
https://doi.org/10.1083/jcb.200606016
https://doi.org/10.1523/JNEUROSCI.4290-06.2007
https://doi.org/10.1523/JNEUROSCI.4290-06.2007
https://doi.org/10.1016/j.biopsych.2012.09.030
https://doi.org/10.1016/j.biopsych.2012.09.030
https://doi.org/10.1016/j.jpsychires.2014.01.021
https://doi.org/10.1016/j.jpsychires.2014.01.021
https://doi.org/10.1016/j.bbi.2018.09.024
https://doi.org/10.1016/j.bbi.2018.09.024
http://www.ncbi.nlm.nih.gov/pubmed/27070349
https://doi.org/10.1016/j.biopsych.2008.10.039
https://doi.org/10.1016/j.biopsych.2008.10.039
https://doi.org/10.1016/j.schres.2014.04.041
https://doi.org/10.1016/j.schres.2014.04.041
https://doi.org/10.1038/s41598-017-05507-6
https://doi.org/10.1016/j.neuroimage.2003.07.005
https://doi.org/10.1016/j.neuroimage.2003.07.005
https://doi.org/10.1016/j.neuroimage.2005.01.028
https://doi.org/10.1002/mrm.20774
https://doi.org/10.1016/j.nicl.2013.07.006
https://doi.org/10.1016/j.nicl.2013.07.006
https://doi.org/10.1016/j.neuroscience.2015.05.049
https://doi.org/10.1016/j.neurobiolaging.2009.10.006
https://doi.org/10.1038/nn.4171

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Neuroimaging analysis
	Reach probability calculation
	Tissue-to-tissue correlated gene identification
	Bipartite clustering
	Pathway enrichment analysis
	Pathway interaction analysis
	Blood expression analysis
	Statistical analysis and visualizations

	Results
	Brain connectome by dMRI and associations with AD diagnosis
	Brain regions connected by different white matter tracts
	Brain connectome by tissue-tissue transcriptional synchronization
	Comparison of brain connectomes by diffusion MRI and genomics
	Pathways associated with TTC gene pairs between different brain regions
	Toll receptor signaling pathway is overrepresented in both tract-bound and AD-associated tract-bound ROI pairs
	Toll receptor signaling genes in the blood associate with tract-wise diffusion measures in the brain

	Discussion
	Conclusion
	Supplementary information
	Abbreviations
	Acknowledgements
	Declarations
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

